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THE ASYMPTOTIC FORM OF THE FAR FIELD
OF AN INTERNAL WAVE SOURCE MOVING IN AN
EXPONENTIALLY STRATIFIED MEDIUM+

V. A. BOROVIKOV

Moscow
(Received 9 October 1994)

The uniform asymptotic form of the far field of a linear gravitational internal wave source which moves uniformly and rectilinearty
along the horizontal in an homogeneous, horizontally exponentially stratified medium is constructed. The expression obtained
enable one to find this asymptotic form for any mutual arrangement of the source and the observation point. Copyright © 1996
Elsevier Science Ltd.

1. FORMULATION OF THE PROBLEM

A spacex, y, z is considered which is filled with an exponentially stratified, ideal, incompressible fluid with a density
distribution p(z) = pg exp(—oz) and the field, excited by a dipole mass source, which moves in a negative direction
along the x axis at a constant velocity V. It is assumed that the source is switched on and commences its motion
att = 0. Then, when ¢t — << and in the case of fixed § = + V4, y, z (that is, for a fixed position of the observation
point relative to the source), the field tends to a finite limit. If the dipole is orientated along the x axis and has unit
moment, the limiting values of the elevation { and the horizontal components of the velocity u,, u, have the form
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where k = V(og)/V and 2 is the acceleration due to gravity. The arithmetic value of the root is understood to be
V(K - o®) when k? >> o and iV(o — k%) when k2 < o,

The problem of determining the asymptotic form of the field in the far zone, that is, when r = V(&2 + y? + 2%)
> 1, is formulated. This asymptotic form has been obtained in [1] for the case when the phase function ® = of
+ Py + ¥ has stationary points, that is, when & > 0. The results in [1], however, are inapplicable when § — 0, that
is, in the neighbourhood of a plane which passes through the source and is perpendicular to its trajectory (a transverse
plane) and when z -» 0, that is, in the neighbourhood of the horizon of the source. The purpose of this paper is
to construct the asymptotic form of the far field which is applicable to any kr > 1 and §, y, z.

2. THE ASYMPTOTIC FORM OF THE FAR FIELD SUBJECT TO | kz |
HAVING A LOWER BOUND

We transform the integral for G. This integral can be written in the form
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G= Reof do T T(a.B)dp
0

—o0

with the same integrand as in (1.2). Putting & = r cos 8,y = rsin 8 cos ¢,z = r sin 0 sin @ (0 < 6, ¢ < &) and
changing to the variables of integration p = d/k; g = p/o, we obtain

dp
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We now find the non-uniform asymptotic form Q as kr — e and for fixed 8 # 0, n/2; 7; ¢ # 0, 7. This asymptotic
form is determined by the stationary point T; = (sin ¢ cos 6, —cos @ ctg 8) of the phase function ® within the
domain of integration and the stationary point T, = (0, 0) on the boundary of this domain and has the form

__explikrsin@)x(cosB) + expi(m/ 4+krsin@sin0) @.2)
21:V2kr\/l—sin2(pcos26 Vz(anr)%wlsinq)sinGcose

The first term is the contribution of the stationary point T; and the second is the contribution of the stationary
point T;. The function y(cos 8) = 1 when cos 0 > 0, that is, when this point is within the domain of integration p
> 0 and makes a contribution to the asymptotics form Q; x = 0 when cos 6 < 0, that is, when this point is outside
the domain of integration. Hence, in the rear half-space & > 0 (with respect to the direction of the motion of the
source), the field decreases when r — oo as r™%, while in the front half-space it decreases more rapidly as 7 2.

The asymptotic form (2.2) is inapplicable when cos 8 — 0, that is, for small £ = x + V% in the neighbourhood
of the transverse plane and when sin ¢ sin 8 — 0, that is, for small | kz | = kr sin ¢ sin 0 in the neighbourhood of
the horizon of the source. We now write out the asymptotic form which is applicable close to the transverse plane,
that is, which describes the transition from the front half-space to the rear half-space.

When cos 8 — 0, the stationary point T; tends to the boundary p = 0 of the integration domain. Since T; is the
point of a local maximum in the phase function, the uniform asymptotic form G is expressed [2] in terms of
the complex conjugate Fresnel integral. In order to obtain this integral, it is necessary to replace the function
x(cos ) by the expression
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where F*(n) is the complex conjugate Fresnel integral
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As a result, we obtain
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This expression is applicable for values of 8 close to n/2 and, when the argument of the Fresnel integral is large,
it is asymptotically equivalent to (2.2). It is inapplicable, however, when sin 0 sin ¢ — 0, that is, close to the horizon
of the source.

3. THE ASYMPTOTIC FORM OF THE FAR FIELD IN THE FRONT
HALF-SPACE FOR SMALL | kz |

Before constructing this asymptotic form, we transform the integral with respect to ¢ in (2.1). We put (¢ = sh¢)
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It can be shown by a shift with respect to ¢ that, when o — B? = y* — 8, the equality F(o., B) + F(y, 5) holds.
The integral with respect to g in (2.1) can therefore be written in the following equivalent forms

| exp[ikrsina(pqcoupﬂ/(l—pz)(l+q2)simp)]\j_fi_q_’=
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= | e"p[ik"Sine(l’Q*'\/l_ﬂl_l—simp)] dg  _
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= [ exp{ikrsine(qcos(p+\/(l -p)X1+4¢%) ﬂ——i‘i—— (3.1)

Using the first of these equalities, we write

1 T d T
Q=~——— j b = J cxpilcr[p(cos(-)+qsin())+\h+q2 sinesincp] rilf]__ 32)
vt g it Ji+q?

Here, by analogy with formula (1.2), whenp > 1, V(1 - p?) is understood as being the quantity iV(p® - 1), that
is, the branch point p = 1 of the function V(1 - p?) is circumvented in the lower half-plane during the integration.

We now transform: the integration path in (3.2) into the half-line p = ¢ exp(—iB) (where 0 < ¢ < ) in the complex
P plane and the line —~ < g <  into a contour, consisting of the half-linesq =i + r when ~ <t <0andg =i
+ ¢ exp(io) when 0 < t < o, where o > . With this choice of integration contours and, when cos 6 < 0, the
exponential function in (3.2) will have a negative real part, the integral will be absolutely convergent when | p |,
| g | = oo and the order of integration in (3.2) can be changed. When kr > 1, the inner integral (with respect to p)
is then calculated asymptotically and, for G = Re Q, we obtain

exp(ikr\/ I+ q2 sinBsing@ )dq
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where the pole g = —ctg 0 is circumvented in the upper half-plane. This function can be written in the
form
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where the pole g = —ctg 0 is circumvented in the upper half-plane and the pole g = ctg 8 is circumvented in the

lower half-plane.
We will now prove that
oo exp(icv ] +q2 )a’q J (C) o 5( 0 n
cosBIm | = —— =21 L2,y [—clg'(—)) Ja, () (3.4)
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where J,, is a Bessel function. Denoting the left-hand side of (3.4) is F({, 6), we have
). 3°F T exp(iC\[HqZ qu
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Hence, F(L, 8) can be found as the solution of the equation

=1tcos0Jy (L)

2
F+sin29-3c—f =ncos8Jy (L)

which tends to zero as | { | - o (which follows from the rule for circumventing the poles in integral (3.3) which
has been formulated above). Formula (3.4) is now verified by direct computation using well-known formulae (see
[3, formulae 8.471)) for the derivatives of Bessel functions.

Hence, when kr > 1 and cos 0 < 0, we have obtained the following asymptotic expression for G

| Jotkz) & ( > 9]" -3
= At e —clg® = | Jy, (k) |+ OCkr)™ 35
21tV2kr{ 5 E’: g 3] /2 (35)

This expression is convenient to use for small z, that is, J,,(kz) tend to zero exponentially with respect to n
when n > kz/2 and it suffices to take a relatively small number of terms in the series with respect to n. For example,
when kz = 4, we have
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Jod)=-03971  J4(4)=0.2811 Jg(4) = 0.0049
J(4)=03641  Ji(4)=0.0490 J1o(d) = 0.0002

and it is sufficient to take 3-4 terms in series (3.5). The multiplier ctg?(6/2) is an additional factor in the convergence,
since ctg(6/2) < 1 whenn/2 < 8 < . If | kz | > 4, the asymptotic expression (2.2) provides sufficient accuracy when
the values of | cos 6 | have a lower bound while (2.3) provides sufficient accurately for small | cos 6 {.

4. THE ASYMPTOTIC FORM OF THE FAR FIELD IN THE REAR
HALF-SPACE

‘We now consider the values cos 0 > 0. Integral (2.1), after making the substitution p, g — ~p, —g, can be written
in the form

: 0 o

: - . d
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where
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On the other hand, it is obvious that
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with the same function ®;. Hence

L= =
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and

G(r,0,9)=-G(r,k—8,0)+Re!(r,0,9)

‘Since the asymptotic form G when @ > /2 is already known, it is sufficient to find the asymptotic form 1. We
make use of the second equality in (3.1) after which we change the order of integration. The asymptotic form of
the integral with respect to p can then be found by the stationary-phase method, after which we obtain
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In the case of | sin 0 |, which has a lower limit, that is, far away from the half-plane & > 0, the asymptotic form
of the integral I, is calculated using the stationary-phase method

[=— exp(ikrsing)
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cos(krsing)

G(r.8.9)~G,(r,0,9)=— -G, (r.8,¢) (4.1)
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When | sin 0 | = 0 and the values of | cos @ | in the integrand in /; have a lower bound, the two branch points g
= =i sin O tend to the real axis and it is necessary to take account of their contribution to the asymptotic form 1.
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In the principal term of the asymptotic form, this contribution is described by the model integral

| SxpUkrgcos@)dq _ o (krsinBeos@) = 2K (ky)

— Y sin’ 9+q2
where K, is a Bessel function with an imaginary argument (see [3, formula 3.754]). Hence

cos(kr—m/4)K,(ky)
V2 \2kr

The second term is only important when | &y | is bounded. When | ky | — 0, it increases logarithmically.

The asymptotic form written out above is inapplicable for small | sin 0 | and | cos ¢ |. In this case, the stationary
point ¢ = —ctg ¢ turns out to be close to the branch points g = i sin 8 and the following function, which does
not reduce to well-known special functions, is the model integral

G(r,0,0)= G| -

(42)

T explitx— o)? 1dx

W= | BZ+ 12 (43)
The asymptotic form G for small | sin 8 | and | cos ¢ | is
G~- l Re expiC R/ 2+ lrsing) W(mcosgsin(i—g), 2kr sin-e—cos(lt-—g))}+
2aniy? Jkr(1+sin@cos6) 2 \4 2 ) 2 2
+ Gor, 0, ©) (44)

The quantity (kr)"* is the criterion of the smallness of sin 6 and cos 8 in the above estimates.

5. CONCLUSION

We will now formulate the results which have been obtained. A function G has been considered which has the
integral representation (1.2). The field of the linear internal gravitational waves, excited in a horizontally stratified
medium with a density distribution p(z) = pg exp(—oz) with a dipole mass source of unit moment, orientated along
the x axis and which moves along the x axis in a negative direction at a velocity ¥, is expressed in terms of G using
formulae (1.1). The asymptotic for of G when & = x + Vt = rcos 8;y = r sin 0 cos @;z = r sin 0 sin ¢, k = N(og)/V’
and kr > 1 is described by the followin& expressions.

When | z | > V(r/k), | cos 8 | > (kr)™%, that is, far from horizontal plane of the source z = 0 and the transverse
plane 8 = w/2, it is described by formula (2.2).

Close to the transverse plane 8 = 7/2, but beyond the horizon of the source, that is, when | cos 8| < (kr)™", | z
| > V(r/k), it is described by formula (2.3). Close to the horizontal plane of the source in the front half space, that
is, when | z| > V(r/k), ©/2 < 0 < m, it is described by formula (3.5).

Close to the horizontal plane of the source in the rear half-space but far from the half-axis § > 0, that is, when
|z] > V(rlk), 0 < 8 < /2, sin 8 > (kr)™/*, it is described by formula (4.1).

In the neighbourhood of the half-axis £ > 0, that is, when 8 =~ sin 8 < (kr)™"*, it is described by formula (4.2)
when cos @ > (kr)™* and by formula (4.3) when cos ¢ < (kr) ™.
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